时序数据库介绍
TSDB(Time series database)
A time series database (TSDB) is a software system that is optimized for handling time series data, arrays of numbers indexed by time (a datetime or a datetime range).
数据特征:
- 结构简单
- 数据量大
可以看出时序数据库是存储按照时间进行增量增长,无数据更新的交易数据。通过唯一标识和时间戳进行数据存储,其特点是结构简单,数据量大。
数据库特征:
- 写多于读,顺序写入,很少或者不更新,更新使用块删除。
- 顺序读取,读取一段时间的数据内容,读取数据内容较大
- 可支持分布式
如何评价一个时序数据库?
- 性能:写入性能吞吐量要高,查询读取性能延迟性地
- 存储:集群扩展
- 功能:对查询功能的支持(可视化、报警)
- 技术:技术预研
- 运维:维护和部署难度,自动归档、压缩、删除
- 成熟度:生态系统、第三方插件丰富程度、开发/社区活跃度,是否有成功案例
- 背景:开发商背景,持续优化,高级功能收费
- 安全性:根据需要进行评估
时序数据库选型:
首先看一下排名:
https://db-engines.com/en/ranking/time+series+dbms
对比一下数据库特征:
InfluxDB
主页 https://influxdata.com/
编写语言 Golang
License MIT
项目创建时间 2013
最新版 v0.10.1 2016/2/18
活跃度 活跃
文档 详细
InfluxDB由Golang语言编写,也是由Golang编写的软件中比较著名的一个,在很多Golang的沙龙或者文章中可能都会把InfluxDB当标杆来介绍,这也间接帮助InfluxDB提高了知名度。
InfluxDB的主要特点包括下面这些:
schemaless(无结构),可以是任意数量的列
可扩展(集群)
方便、强大的查询语言
Native HTTP API
集成了数据采集、存储、可视化功能
实时数据Downsampling
高效存储,使用高压缩比算法,支持retention polices
InfluxDB是TSDB中为数不多的进行了用户和角色方面实现的,提供了Cluster Admin、Database Admin和Database User三种角色。
InfluxDB的数据采集系统也支持多种协议和插件:
行文本
UDP
Graphite
CollectD
OpenTSDB
不过InfluxDB每次变动都较大,尤其是在存储和集群方面,追求平平安过日子,不想瞎折腾的可以考虑下。
注意:
由于InfluxDB开发太活跃了,很可能你在网上搜到的资料都是老的,会害到你,所以你需要以官方文档为主。
一句话总结:欣欣向荣、值得一试。
RRDtool
主页 http://oss.oetiker.ch/rrdtool/index.en.html
编写语言 C语言
License GNU GPL V2 or later
项目创建时间 16-Jul-1999 rrdtool-1.0.0
最新版 rrdtool-1.5.5 10-Nov-2015
活跃度 活跃
文档 详细
RRDtool全称为Round Robin Database Tool,也就是用于操作RRD的工具,简单明了的软件名。
什么是RRD呢?简单来说它就是一个循环使用的固定大小的数据库文件(其实也不太像典型的数据库)。
大体来说,RRDtool提供的主要工具如下:
创建RRD(rrdtool create)
更新RRD(rrdtool update)
画图(rrdtool graph)
这其中,画图功能是最复杂也是最强大的,甚至支持下面这些图形,这是其他TSDB中少见的:
指标比较,对两个指标值进行计算,描画出满足条件的区域
移动平均线
和历史数据进行对比
基于最小二乘法的线性预测
曲线预测
总之,它的画图功能太丰富了。
一句话总结:老牌经典、艺多不压身。
Graphite
主页 http://graphite.readthedocs.org/en/latest/
编写语言 Python
License Apache 2.0
项目创建时间 2006年
最新版 0.9.10 2012/5/31
活跃度 活跃
文档 详细
Graphite由Orbitz, LLC 的 Chris Davis创立于2006年,它主要有两个功能:
存储数值型时序列数据
根据请求对数据进行可视化(画图)
相应的,它的特点为:
分布式时序列数据存储,容易扩展
功能强大的画图Web API,提供了大量的函数和输出方式
Graphite本身不带数据采集功能,但是你可以选择很多第三方插件,比如适用于collectd、Ganglia或Sensu的插件等。同时,Graphite也支持Plaintext、Pickle和AMQP这些数据输入方式。
Graphite主要由三个模块组成:
whisper:创建、更新RRD文件
carbon:以守护进程的形式运行,接收数据写入请求
carbon-cache:数据存储
carbon-relay:分区和复制,位于carbon-cache之前,类似carbon-cache的负载均衡
carbon-aggregator:数据集计,用于减轻carbon-cache的负载
graphite-web:用于读取、展示数据的Web应用
whisper使用了类似RRDtool的RRD文件格式,它也不像C/S结构的软件一样,没有服务进程,只是作为Python library使用,提供对数据的create/update/fetch操作。
如果你对它的性能比较在意,这里有一份老的数据可供参考。
Google、Etsy、GitHub、豆瓣、Instagram、Evernote和Uber等很多知名公司都是Graphite的用户。有此背景,其可信度又加一层,而且网上的资料也相当的多,值得评估一下。
一句话总结:群众基础好、可以参考。
OpenTSDB
主页 http://opentsdb.net/
编写语言 Java
License LGPLv2.1+ GPLv3+
项目创建时间 2010
最新版 2.2
活跃度 活跃
文档 详细
OpenTSDB是一个分布式、可伸缩的时间序列数据库。它支持豪秒级数据采集所有metrics,支持永久存储(不需要downsampling),和InfluxDB类似,它也是无模式,以tag来实现维度的概念。
比如,这就是它的一个metric例子:
mysql.bytes_received 1287333217 66666666 schema=foo host=db1
OpenTSDB的节点称为TSD(Time Series Daemon (TSD)),它没有主、从之分,消除了单点隐患,非常容易扩展。它主要以HBase作为存储系统,现在也增加了对Cassandra和Bigtable(非云端)。
OpenTSDB以数据存储和查询为主,附带了一个简单地图形界面(依赖Gnuplot),共开发、调试使用。
一句话总结:好用,我们在用。
KDB+
主页 http://kx.com/
License 商业
所有TSDB中,估计就数这个最酷了,我说的是域名,只有两个字母,猥琐地想一下,域名就值很多钱 :-)。
kdb+是一个面向列的时序列数据库,以及专门为其设计的查询语言q(和他们的域名一样简短)。Kdb+混合使用了流、内存和实时分析,速度很快,支持分析10亿级别的记录以及快速访问TB级别的历史数据。
不过这是一个商业产品,但是也提供了免费版本(貌似还限制在32位)。
- KairosDB
– – 备注
主页 http://kairosdb.github.io/
编写语言 Java
License Apache License 2.0
项目创建时间 2013
最新版 1.1.1 2015/12/08
活跃度 活跃
文档 详细
KairosDB是一个OpenTSDB的fork,不过是基于Cassandra存储的。由于Cassandra的行比HBase宽,所以KairosDB的Cassandra的默认行大小为3星期,而OpenTSDB的HBase则为1小时。
KairosDB支持通过Telnet、Rest、Graphite等协议写入数据,你也可以通过编写插件自己实现数据写入。
KairosDB也提供了基于Web API的查询接口,支持数据聚合、持过滤和分组等功能。
同时KairosDB提供了一个供开发用的Web UI,图形绘制引擎使用了 Flot。
和OpenTSDB类似,KairosDB 也提供了插件机制,你可以使用插件完成如下工作:
添加数据点(data point)监听器
添加新的数据存储服务
添加新的协议处理程序
添加自定义系统监视服务
Druid
主页 http://druid.io/
编写语言 Java
License Apache License 2.0
项目创建时间 2011
最新版 Druid 0.9.0-RC2 2016/02/23
活跃度 活跃
文档 详细
Druid是一个快速、近实时的海量数据OLAP系统,并且是开源的。Druid诞生于Metamarkets,后来一些核心人员创立了IMPLY公司,进行Druid相关的产品开发。
Druid会按时间来进行分区(segment),并且是面向列存储的。它的主要特性如下:
支持嵌套数据的列式存储
层级查询
二级索引
实时数据摄取
分布式容错架构
根据去年底druid.io的白皮书,现在生产环境下最大的集群规模如下:
3M EVENTS / SECOND SUSTAINED (200B+ EVENTS/DAY)
10 – 100K EVENTS / SECOND / CORE
500TB OF SEGMENTS (>50 TRILLION RAW EVENTS)
5000 CORES (>400 NODES, >100TB RAM)
QUERY LATENCY (500MS AVERAGE)
90% < 1S 95% < 2S 99% < 10S
3+ trillion events/month
3M+ events/sec through Druid’s real-time ingestion
100+ PB of raw data
50+ trillion events
Druid企业用户比较多,比如OneAPM、Netflix和Paypal等。具体可以参考 http://druid.io/druid-powered.html 。
Druid架构比较复杂,因此对部署和运维也有一定的负担,比如需要的机器多、机器配置要高(尤其是内存)。
一句话总结:好用,我们在用。
Prometheus
主页 http://prometheus.io/
编写语言 Golang
License Apache License 2.0
项目创建时间 2012
最新版 0.17.0rc2 2016-02-05
活跃度 活跃
文档 详细
Prometheus是一个开源的服务监控系统和时序列数据库,由社交音乐平台SoundCloud在2012年开发,最近也变得很流行,最新版本为0.17.0rc2。
Prometheus从各种输入源采集metric,进行计算后显示结果,或者根据指定条件出发报警。
和其他监控系统相比,Prometheus的特点包括:
多维数据模型(时序列数据由metric名和一组key/value组成)
灵活的查询语言
不依赖分布式存储,单台服务器即可工作
通过基于HTTP的pull方式采集是序列数据
可以通过中间网关进行时序列数据推送
多种可视化和仪表盘支持
由于Prometheus采用了类似OpenTSDB 和 InfluxDB的key/value维度机制,所以如果你对任一种TSDB有了解的话,学习起来会简单些。
一句话总结:貌似比较火,何不试一试?
Pinot
主页 https://github.com/linkedin/pinot/wiki
编写语言 Java
License Apache License 2.0
项目创建时间 2014/08
最新版 0.016
活跃度 活跃
文档 详细
Pinot是一个开源的实时、分布式OLAP数据存储方案。它来自Linkedin,虽然Linkedin最近估价表现很差,但是他们创建的各种软件、中间件实在太多了。这一点我们做软件的都应该向Linkedin表示感谢。
Pinot就像是一个Druid的copy,不过两者的灵感都来源于SenseiDB(Sensei在日语里为老师的意思,写成汉字为“先生”)。
Pinot也像Druid一样,能加载offline数据(Hadoop文件)和实时数据(Kafka)。Pinot从设计上就面向水平扩展。
Pinot主要特点:
面向列
插拔式索引引擎:排序索引、位图索引和反向索引
根据查询语句和segment信息对查询/执行计划进行优化
从Kafka实时数据摄取(ingestion)
从Hadoop进行批量摄取
类似SQL的查询语言,支持聚合、过滤、分组、排序和唯一处理。
支持多值字段
水平扩展和容错
Pinot的特点和Druid很像,两者可互为参考。
一句话总结:背靠大树好乘凉。